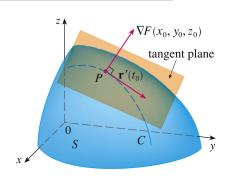
Lesson 18. Tangent Planes and Normal Lines

0 Warm up


Example 1. Let *P* be the point (2, 0, 1) and $\vec{v} = (1, -2, 5)$.

- a. Find parametric equations of the line that passes through *P* and is parallel to \vec{v} .
- b. Find an equation of the plane through point *P* with normal vector \vec{v} .

1 Tangent planes and normal lines in 3D

- Consider a surface with equation F(x, y, z) = k
- The gradient $\nabla F(x_0, y_0, z_0)$ is

to the surface at (x_0, y_0, z_0)

- The **tangent plane to the surface** F(x, y, z) = k at (x_0, y_0, z_0) is the plane that
 - passes through (x_0, y_0, z_0) and
 - ∘ has normal vector $\nabla F(x_0, y_0, z_0)$
- Equation of tangent plane to F(x, y, z) = k at (x_0, y_0, z_0) :

ample 2.	2. Find an equation of the tangent plane to the ellipsoid $\frac{x^2}{9} + y^2 + \frac{z^2}{4} = 3$ at the	ne point $(-3, 1, -2)$.
ample 3.	3. Find an equation of the tangent plane to the surface $z = 2x^2 + y^2$ at the poi	nt (1,1,3).
o pa	armal line to the surface $F(x, y, z) = k$ at point (x_0, y_0, z_0) is the line that assess through (x_0, y_0, z_0) and a perpendicular to the tangent plane (i.e., is parallel to $\nabla F(x_0, y_0, z_0)$)	
	etric equations of the normal line to $F(x, y, z) = k$ at (x_0, y_0, z_0) :	
ample 4.	1. Find the normal line to the ellipsoid $\frac{x^2}{9} + y^2 + \frac{z^2}{4} = 3$ at the point $(-3, 1, -1)$	2).
	, ,	

2 Tangent lines in 2D

• The **tangent line to the curve** f(x, y) = k at (x_0, y_0) is given by

 $\nabla f(x_0, y_0)$ $P(x_0, y_0)$ evel curve f(x, y) = k

Example 5. Let $g(x, y) = x^2 + y^2 - 4x$. Find the tangent line to the curve g(x, y) = 1 at the point (1, 2).